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ABSTRACT 

 

Many costs for waterjet cutting are caused by limited lifetime of components such as orifices or 

focusing tubes. Today, defective orifice or the focusing tube are detected by the machine operators 

upon process failure. Early detection of an imminent failure of these components requires an 

experienced machine operator. Most of the time, however, one can only distinguish between a 

functional tool and a damaged tool. For a full automatization of a waterjet cutting system, a reliable 

indicator of damage is needed. 

In this study, the wear parameters and their influence on the failure of orifices and focusing tubes 

were investigated. At first the damage state of the components (orifice and focusing tube) was 

analyzed by using light imaging and laser confocal microscopy. In the present water jet cutting 

process four components (damaged/new orifice and damaged/new focusing tube) were observed 

with a high-speed camera and analyzed by thermography and acoustic emission. After the 

evaluation of all data, damage of the orifice and/or the focusing tube could be identified with a high 

reliability. Next, the focus was set on the automatization of the water jet cutting head. Therefore a 

high pressure screw connection was designed. With this smart tool it is possible cutting to change 

a cutting head between pure water, abrasive water injection jet (AWIJ) and abrasive water 

suspension jet (AWSJ). In connection with the idea of process observing in a full automatized 

mode becomes feasible.  
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1. INTRODUCTION 

Nowadays, many processes like milling or drilling are monitored. If incoming events are detected, 

they are resolved accordingly. In waterjet applications, the machine operators detect damages of 

tool parts in the area of the cutting head. Currently there is no online monitoring tool for the wear 

of the orifice or the focusing tube. Most of the previous studies focus on - focusing tube wear. The 

most important reasons for replacement of the focusing tubes are that they are worn (85%) or 

broken (13 %). Thus, the wear of the focusing tube is a significant factor of the abrasive water-jet 

machining. Worn of the focusing tubes influence the cut geometry as well as the surface quality 

[MOM98]. The most common method to estimate the focusing tube wear is by measuring the focus 

outlet diameter over a given period. In the year 1994 Mohamed Hashish [HAS94] made a study 

about the inner diameter of focusing tubes and the correlation between focusing tube material and 

wear. He showed data suggesting that the wear mechanisms along the mixing tube change from 

erosion by particle impact at the upstream sections to abrasion at the downstream sections 

[HAS94]. This study shows also a dependency of the orifice diameter on the focus wear. In 

addition, Kovacevic et al. [KOV89] address in their study that wear rate increases with an increase 

in the abrasive mass flow rate. In a further investigation Kovacevic et al. [KOV94] analyzed the 

relationship between the nozzle inside diameter and the generated acoustic signal. They installed a 

microphone next to the waterjet machine and monitored the process noise during material cutting 

and without cutting. A change in the level of the acoustic signal could be detected. Also the orifice 

was observed as critical parameter. A misalignment with the focusing tube or a microscopic chip 

in an orifice can reduce nozzle life to minutes instead of hours [KOV94]. Their conclusion is that 

the conventional FFT method gives an unrealistic assumption about the data. They state that is 

difficult to extract useful characteristics out of the time series based on the assumption that the 

signal is made up of sine and cosine waves with different frequencies. Therefore, the analysis it is 

more estimations than defined statements about the state of components. 

 

This study is to investigate the correlation between the orifice/focusing tube wear and a controlling 

system. For this, high speed recordings, thermographic emission and acoustic emission of the 

mixing chamber and the hole cutting head were carried out. The aim was to investigate which 

experimental methods give the most or the best information about the wear of orifice and focusing 

tube. In addition, an automated connection of the cutting head is explained. 

 

2. MATERIALS AND METHODS 

2.1 MATERIALS 

2.1.1 Experimental setup 

For all experiments a high pressure intensifier (BFT GmbH, Type Servotron 40.37) with a 

maximum pressure of 400 MPa and a maximum flow rate of 3.8 l/min was used. The cutting table 

consisted of a catcher (2000x1000mm), a controlled X/Y axis and a manual Z axis. The valves and 

the abrasive dosing system were numerical controlled by a NC control system (Baldor GmbH). 



Garnet Mesh #120 (GMA Garnet Europe GmbH) was employed as the abrasive particle for all tests 

(see Table 1). The used cutting head (BFT GmbH) is shown at Figure 5. 

2.1.2 Orifice 

The used orifices were of the type sapphire 1830 (Comadur Sa) with a dimeter of 0.3 mm. At the 

beginning of the investigation two orifices were selected. One brand new one and one orifice, 

which ran more than 60 hours. These were the starting conditions. Within the experiments both 

orifices got worn for about 10 more hours. The state of both orifices were analyzed at the beginning 

of the experiments by using light microscopic imaging. Figure 1a shows the top and Figure 1b the 

bottom of the damaged orifice. Both the top and the bottom has significant outbreaks in the 

sapphire. The diameter of the orifice at the bottom is 0,321 mm and maximum of diameter at the 

outbreaks is about 2,5 mm. In comparison, the brand new orifice has a diameter at the bottom of 

0,301 mm and is shown in Figure 1c & 1d. 

 

To get more information about the outbreaks at the top, the orifices were pictured with a laser 

confocal microscope (Figure 2). The image shows an uneven surface of the entry radius of the used 

orifice in Figure 2a. Also the drilling hole is slightly oval in the middle of the sapphire. In 

comparison, Figure 2b show a perfect concentric entry to the hole of the orifice. 

2.1.3 Focusing tube 

The focusing tubes in this study were of type Roctec 100 (Kennametal, GMA Garnet 

Europe GmbH) and had the dimensions of 6.00x0.8x70mm (Outside diameter, inside diameter, 

length). The material of this tubes is Roctec 100 which has a high Vickers hardness of about 25.5-

27.7 kg/mm2 [KEN17]. The starting conditions were the same as for the orifices. One brand new 

one, one with a run time of more than 60 hours and both got about 10 hours of wear during the 

experiments. The light microscope images - are displayed in Figure 3. Figure 3a shows the top and 

3b the bottom of the damaged focusing tube. This tube had a diameter of 1.01 mm at the outlet 

side. In the inlet, this tube was washed out. Because of the depth it was not possible to picture the 

inlet radius with light microscope imaging or laser confocal microscopy. The new focusing tube is 

shown in Figures 3c-d. This had an inner diameter of 0.803 mm at the beginning of the experiments. 

 

2.2 METHODS & IMPLEMENTATION OF EXPERIMENTS 

In all experiments of present water jet cutting process four variation of experimental setup (see 

Table 2) were observed with the following methods. The cutting head is stationary during the entire 

test. Thus the measured results are not influenced by vibrations of the maschine axis. 

 

2.2.1 High speed camera 

For the visual detection of defects of the orifice or the focusing tube the high-speed camera Photron 

Fastcam SA5 (Photron USA Inc., San Diego, USA) was used. This camera delivers excellent light 

sensitivity (ISO 10000-test). The dynamic range through is a 12-bit monochrome sensor with 

twenty micron square pixels and had a memory flash of 8 Gb. In the experiments the water jet 

stream was recorded with a resolution of 256 pixels x 1024 pixels and a bit rate of 500 fps. This 



corresponds to one picture every 2 ms. The recording time was about 5 seconds, which was chosen 

because the system becomes homogenous right after the valve opened. The observed area is 

illuminated from one side using an infrared laser (Cavilux HF, Fa. Acal BFi Germany GmbH, 

Gröbenzell, Germany) with a frequency equal to the frame rate of 500 fps. 

 

2.2.2 Thermography emission 

To analyze the heat up of defect components, the cutting head’s temperature was measured using 

thermography emission camera type ThermaCam SC3000 (FLIR Systems, Wilsonville, Oregon, 

USA). The image recording frequency was set to 10Hz with a resolution of 404 pixels × 240 pixels. 

For all measurements, the cutting head's surface was blackened using a graphite spray prior to the 

experiment to obtain a constant coefficient of emission of α = 0.95. After measuring, the 

temperature at the three positions safety screw, focusing tube, and mixing chamber (see Figure 5) 

were evaluated with the software ThermaCam Researcher Pro 2.7 (FLIR Systems, Wilsonville, 

Oregon, USA). 

2.2.3 Acoustic emission 

Another method to get information if  orifice or  focusing tube are damaged is to analyze the cutting 

head’s acoustic emission. Therefore, the acoustic emission senor was mounted on the cutting head. 

The position was opposite to the abrasive inlet (see Figure 5). 

The measurement data for the acoustic emission was acquired with a Deci SE650-P AE sensor. 

This sensor type is charge based and delivers an extremely small currents output. Therefor a charge 

amplifier was used. The employed amplifier is a Vallen AEP4 (Vallen Systeme GmbH, Icking, 

Germany) with a Bandwidth of 2.5 kHz to 1 MHz. As coupling media between senor and cutting 

head surface Äronix Siliconfett (ÄRONIX Spezialschmierstoffe, Walldorf, Germany) was used. 

The measurement was taken with a NI 6133 device (National Instruments, München, Germany) at 

2 MS/s sampling rate with a length of 5 seconds for every single combination of pressure, orifice 

and nozzle. This was done with a Python3 script interfacing the National Instruments device driver. 

To ensure a high enough writing throughput during measurement the data was written onto the 

hard disk as raw 16bit binary file. 

All analysis was performed afterwards. The measurement data was decoded from binary to a 

structured time series format by using an R based software algorithm. After data conversion the 

first N = 50.000 data points of every measurement file were used to perform a Fast Fourier 

transformation (FFT) to determine characteristic frequencies for specific operating conditions of 

the waterjet. The FFT was calculated according to the following formula [COO65] 

a𝑘 = ∑ 𝑎𝑗 ∙ 𝜔𝑗∙𝑘
2𝑛−1

𝑗=0
  (𝑘 = 0, … , 2𝑛 − 1) 

Data conversion and analysis require a significant amount of calculation time. Time needed to 

convert the data can only be shortened by using a faster computer or reducing the measurement 

time or respectively the number of data points used in the analysis. Reducing measurement time 

would limit the ability to perform in depth analyses of the existing data with other methods later 

on. The discrete Fourier transformation has a complexity of 



𝐹𝐹𝑇 ∈ 𝒪( 𝑁 log (𝑁)) 

meaning that calculation time increases nonlinear with an increasing number of data points used in 

the analysis [VET84].The minimal detectable frequency difference depends on the number N of 

data points analyzed following the formula 

𝑓𝑟𝑒𝑠𝑢𝑙𝑢𝑡𝑖𝑜𝑛 =  
𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑟𝑎𝑡𝑒

2 ∙ 𝑁
 

Better frequency resolution can only be archived by using more data points when preforming the 

FFT. It has to be considered that the upper limit of frequencies that can be analyzed is half of the 

used sampling rate of date acquisition according to stability criterion of Nyquist. The parameters 

used in the shown analyses therefor allow a frequency resolution with a 80 Hz step width 

[KAM02]. 

For further data analysis wavelets are a promising option because this method would allow time 

based frequency analysis for the process. If characteristic frequencies can be linked to certain 

operational states the Goertzel algorithm is an option to develop a cost effective online monitoring 

system for the waterjet cutting head [BEC01, GEN69]. 

2.2.4 Design of an automated high pressure screw connection tool 

With a tool monitoring system as described above (2.2.3) it is possible to get the information about 

the wear of the orifice and the focusing tube. Thus, the next step for fully automatic waterjet cutting 

is an automated high-pressure screw connection. For this purpose an adapter was designed, which 

allows it to be sealed tightly with the collimating tube. The angle of the adapter’s cone is lower 

than the of the collimating tube’s cone. The sealing surfaces of both parts don’t get fretted, because 

the adapter is guided linear . Due to the different thread pitch of the adapter and the guided locking 

screw, the adapter is pulled linearly from the bottom to the top without any other support. In order 

to always find the first thread, the adapter is mounted with springs. In the event that the first thread 

is not hit the first time, the adapter is pressed down. The counterforce of the springs pushes the 

apex upwards and thus increases the probability of the threaded engagement in the second rotation 

of the screw. The tightness of the connection is ensured by a high tightening torque (>60 Nm). This 

high tightening torque is generated by a stepping motor and worm gear with a transmission ratio 

of 1:11.25. Just the same way the connection is tightened it can also be loosened again by reversing 

the process. In this design (see Figure 12), the bottom of the adapter has an M12 thread and is 

designed like a conventional collimating tube. This allows any types of cutting head to be adapted 

with an M12 thread. Together with a turntable tool revolver or a tool bar the cutting heads can be 

changed within seconds between pure water jet, abrasive water injection jet (AWIJ) and abrasive 

water suspension jet (AWSJ). For cutting with abrasive water suspension jet, however, a special 

valve is required, which is described in publication of Bauer et al. [BAU14] and in patent 

application DE102014100839B4. 

 

3. RESULTS 

3.1 High speed recordings 



The trial E1 shows a very homogenous abrasive waterjet injection jet (AWIJ) with a stream 

diameter of approximately 1mm in the observed range of 30 mm after the focusing tube outflow 

(Figure 4). By comparison, E2 manifests that the AWIJ expands directly after the focusing tube 

exit. The diameter of the AWIJ reaches nearly 3mm. This behavior could also be detected in trial 

E4. There is not significant difference by optical observation. Trial E2 has a new focusing tube and 

E4 a damaged one. In both trials the orifice is damaged. Only the state of the focusing tube changes 

form new (E2) to damaged (E4). Thus, it is not possible to visually determine whether the focusing 

tube is defective when the orifice is defective at the same time. In E3, a non-uniform drop-off can 

be determined in comparison to E1. Moreover, it can also be detected that the influence of the 

defective nozzle on the main AWIJ diameter is rather small. 

3.2 Thermography emission 

The thermographic images show a heating up of the entire cutting head within 60 seconds after 

switching on the AWIJ (see Figure 6 & 7). After approximately 30 seconds, the system is stable 

and has reached its respective maximum temperatures. The highest temperatures are reached on 

the surface of the focus tube with approx. 75 °C followed by safety screw (approx. 60 °C) and 

mixing chamber (20-35 °C). It can be seen that a defect causes an increase of temperature. On 

closer examination, it is noticeable that the temperature of the focusing tube in experiment E2 with 

a deficient orifice is 5 °C lower than in E1 with a new nozzle. It is to be assumed that due to the 

larger diameter of the damaged orifice more water flows through the orifice and focusing tube so 

that the water has cooling effect on the focusing tube.  

3.3 Acoustic emission 

At first, the results of the measurements E1 (green) and E2 (red) were plotted down in Figure 8. 

The Figure 8a shows the acoustic emission of the new in comparison to the damaged orifice 10 mm 

above the water line and a pressure of 300 MPa. The signal intensity is plotted on the y axis. The 

x axis shows the frequency band between 0 and 1000 kHz. In the range between 400 and 1000 kHz, 

only small signal strengths are measurable. Thus the front range up to 400 kHz was examined more 

in detail to find a significant frequency which distinguish between new or damaged orifice. By 

using the mathematical relations (see 2.2.3), the frequency 180 kHz was detected. 

Figure 8b with the results of the measurements 10 mm below the water line show nearly the same 

with a little bit lower signal intensity. This effect is due to the catcher with water, as it acts as a 

damper. However, a damage to the orifice can also be manifested in this measurement with this 

experimental setup and  the frequency of 180 kHz. 

In the next step, the frequency 180 kHz was investigated in the pressure range between 50 and 

400 MPa and plotted in Figure 9. The green measuring points stand for the state new and red for 

the damaged orifice. The signal intensity of the new orifice is higher in all pressure stages than in 

the damaged ones. This effect is particularly visible at 400 MPa. The graphic shows also no 

influence if the cutting head is above (Figure 9a) or below (Figure 9b) water line. 

In the further investigation of the focusing tube similar effects as for the orifice could be detected. 

Figure 10 shows the frequency band on the x axis and the signal intensity on the y axis.  



Also this graphic shows most differences between new (E1, yellow) and damaged focusing tube 

(E3, blue) in the frequency range between 50 and 300 kHz. In the same way a weakening of the 

intensity in the tests below water line can be seen in Figure 10b in comparison to the investigation 

above the water line (Figure 10a). In order to be able to clearly detect that the focusing tube and 

not the orifice is broken, a different frequency was chosen. If the signal intensity is considered at 

the frequency of 163 kHz, a difference between new (E1, yellow) and broken focusing tube (E3, 

blue) can always be detected with the testing condition 10 mm above water line (Figure 11a). 

Below the water line this differentiation is not possible (see Figure 11b). It is not possible with this 

as well as with all other frequencies. The reason for that behavior can be that the sensor is fixed at 

the mixing chamber and the focus is partly submergend in water, the water in the catcher acts as a 

vibration damper. 

 

4. CONCLUSIONS & DISCUSSION 

In this study the wear parameters and their influence on the failure of orifices and focusing tubes 

were studied. The main results can be summarized as follows: 

1. It was visually possible to determine that a component is defective in these experiments. 

However, it is not possible to determine whether it is the focus tube, the orifice or even both 

components. Meanwhile, the results of the high speed recordings are based on the fact that 

the WAIS can be observed about a range of 30mm. During cutting the distance between the 

focusing tube and the work piece is less than 2mm. 

2. With the method of thermography emission it can be seen that a defect causes the increase 

of temperature approx. 5°C in all examined components. However, it is also not possible to 

determine which component is damaged. 

3. High-speed and thermal recording are not possible under water line. 

4. It was technically possible to detect a damage of the orifice or the focusing tube by 

observation of different frequencies with acoustic emission at this experimental setup 

especially this cutting head. A damage detection was also possible under water line. Only 

under water line it is very difficult to differentiate between new and damaged focusing tube 

using this method, caused by damper effect of the water. 

5. It is possible to switch within seconds between pure water jet, abrasive water injection jet 

(AWIJ) and abrasive water suspension jet (AWSJ) by using the design of an automated 

high pressure screw connection tool. 

All in all this study shows the possibility of a full automated cutting with acoustic emission tool 

monitoring in addition with an automated high pressure screw connection tool without a machine 

operator. 

The next steps in this will be investigations with other types of cutting heads. With this information 

it will be possible to make a study by a dynamic moving cutting head. In the end there is the vison 



of an online observation process, which give the control the signal to change a cutting head because 

of a damaged component. 
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7. TABLES 

 

Table 1. Mineral composition of GMA Garnet Mesh 120 [GMA14] 

Mineral Composition wt.-% 

Garnet (Almandine) 97 - 98 

Ilmenite 1 - 2 

Zircon 0.20 

Quartz (free silica) <0.5 

Others 0.25 

 

Table 2. Testing matrix of the experimental setups 

 new focusing tube damaged focusing tube 

new orifice Experimental setup E1 Experimental setup E3 

damaged orifice Experimental setup E2 Experimental setup E4 

 

 

8. NOMENCLATURE 

 

  

E1 ... E4 Experimental setup 1 ... 4 

FFT Fast fourier transformation 

WLH Waterjet Laboratory Hannover 

  

 

 

 

 

 



9. GRAPHICS 

 

Figure 1. Light microscopic images of a damaged (a: top, b: bottom) and a new orifice (c: top, 

d: bottom) of the orifice type 1830 

 

 

Figure 2. Laser confocal microscopic images of the top side of a damaged (a) and a new orifice (b) 



 

Figure 3. Light microscopic images of a damaged (a: top, b: bottom) and a new focusing tube 

(c: top, d: bottom) of the type Kennametal Roctec 100 6.00x0.8x70mm 

 

 
p = 300 MPa; abrasive flow 400 g/min 



Figure 4. High speed recordings – p = 300 MPa 

 

 

Figure 5. Technical setup of the cutting head – Position of the acoustic emission sensor and 

measuring positions the thermographic investigation ( safety screw,  focusing tube,  mixing 

chamber) 



 
p = 300 MPa; abrasive flow 400 g/min 

Figure 6. Thermographic images of the cutting head 

 

 
safety screw , focusing tube  and mixing chamber ;p = 300 MPa; abrasive flow 400 g/min

Figure 7. Cutting heads maximum of temperature – a: E1 (green) vs. E2 (red); b: E3 (yellow) vs. 

E4 (blue) 

 

a b 



(a) 10 mm over water line, (b) 10 mm under water line; p = 300 MPa; abrasive flow 400 g/min 

Figure 8. FFT spectra of cutting head’s acoustic emission – E1 (green) and E2 (red) 

 

 
(a) 10 mm over water line, (b) 10 mm under water line; abrasive flow 400 g/min 

Figure 9. Comparison of cutting head’s acoustic emission at different pressures with the 

significant frequency of 180 kHz – E1 (green) and E2 (red) 

 
(a) 10 mm over water line, (b) 10 mm under water line; abrasive flow 400 g/min 

Figure 10. FFT spectra of cutting head’s acoustic emission – E1 (yellow) and E3 (blue)  

 

a b 

a b 

a b 



 
(a) 10 mm over water line, (b) 10 mm under water line; p = 300 MPa; abrasive flow 400 g/min 

Figure 11. Comparison of cutting head’s acoustic emission at different pressures with the 

significant frequency of 163 kHz – E1 (yellow) and E3 (blue) 

 

 

Figure 12. Schematic layout (left) and Physical construction (right) of the automated cutting 

head 

a b 


