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ABSTRACT 
 

This article presents the use of artificial neural networks to simulation the process of 
hydroabrassive suspension jet cut whose pressure is reduced to 30 MPa. Three-ply layer 
perceptron type network with an error backpropagation learning algorithm was applied to 
describe this process. The article provides detailed description of neural network. This neural 
network simulates the limestone treatment process and predicts its efficiency due to given 
parameters. Impact of the most important parameters, as pressure, traverse speed, abrasive flow 
rate, length and diameter of nozzle was shown. Were determined in which cases this depth is 
biggest.  
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1. INTRODUCTION 
 
In the article refers the simulation model cutting of hydroabrasive suspension waterjet cutting 
process of limestone. Laboratory investigations were carried out on test stand [4] has been built 
from two containers and four independent hydraulic branches, which enable an adjustment of the 
basic flow parameters. Each branch consists of the following valves: a cut-off valve, a throttle 
valve, a non-return valve and a manometer. An overflow valve performs the function of an 
element preventing an excessive increase of pressure. It is set at the pressure of 30 MPa.  
 
A hydraulic monitor P26 type is the source of a high pressure. It is made on the basis of elements 
of a plunger pump made by an WOMA company. It makes it possible to obtain the maximum 
pressure of 75 MPa with the rate of water flow of 75 dm3/min.  
 
The materials were cut by directing the hydroabrasive jet perpendicular to the machined material 
[3, 6], and then a rectilinear traverse speed in relation to the working nozzle. The thickness of the 
samples was selected in such a way that, with the most effective machining parameters, cutting 
through these should not occur, which would make it difficult to correctly determine the depth of 
the cut.  
 
Limestone is a sedimentary rock composed of the mineral calcite (calcium carbonate). The 
primary source of this calcite is usually marine organisms. These organisms secrete shells that 
settle out of the water column and are deposited on ocean floors as pelagic ooze (see lysocline 
for information on calcite dissolution). Secondary calcite may also be deposited by 
supersaturated meteoric waters (groundwater that precipitates the material in caves). This 
produces speleothems such as stalagmites and stalactites. A further form is composed of oolites 
(Oolitic Limestone) and can be recognised by its granular appearance. Limestone makes up 
about 10 percent of the total volume of all sedimentary rocks. Pure limestones are white or 
almost white. Because of impurities, such as clay, sand, organic remains, iron oxide and other 
materials, many limestones exhibit different colors, especially on weathered surfaces. 
 
 
2. ARTIFICIAL NEURAL NETWORKS 
 
The artificial neuron is the basic unit of the artificial neuronal net similarly as in the case of 
neuronal biological nets, nervous cell is the basic unit. The properties of the artificial neuron 
answer is the most important [5] properties of the biological neuron. You should always 
remember that artificial equivalents functions are very simplified [8] in the relation to real 
nervous cells. 
 
The artificial neuron makes up the kind of the converter about many entries and one exit. One 
can distinguish two blocks of the processing of the information inside him. First is block of 
adding up in which entrance signals are increased by suitable coefficients weights and added up 
then.  
 
The topology of the net consisting from 5 neurons of the entrance layer, 30 neurons of hidden 
layer and one outputs neuron (Fig.1.) was accepted to prediction [1] the waterjet cutting process. 



Input data to the entry layer included- pressure, abrasive flow rate, size and diameter of nozzle 
and traverse speed. On the output layer cutting depth was given. In the hidden layer neuron has 
logistic activation function. This is an S-shaped (sigmoid) curve, with output in the range (0,1). 
The most commonly - used neural network activation function. Neurons in input and output layer 
have linear activation function. 
 
The quantity of input and output neurons were taken from the accessible results of investigations 
directly. To learning process ware use 96 training cases that include both input and target output 
values. From process of training excluded 10% of chances, which one used to verification of 
training process. 
 
The net was learning with the algorithm of backward propagation, getting stable results after 30 
thousands iterations with learning rate of 0. 1 and momentum 0.3.  
 
To research [2] was utilized the commercial Statistica Neural Networks for Windows application 
of the StatSoft Inc company. 
 
 
3. EFFECTS OF ARTIFICIAL NEURAL NETWORKS MODELLING 
 
Fig. 2b depicts the results of the artificial neural networks modeling of hydroabrasive suspension 
jet cut in a variable pressure and traverse speed conditions. In comparison, Fig. 2a presents the 
laboratory analysis in which the surface was adjusted using the least square method. The graphs 
in the whole show a great convergence in the material cut depth values, a near identical character 
of dependence and approximate maximum value. In this case standard discrepancy between 
modeled and laboratory values does not go beyond 4.12mm. 

 
Laboratory studies results, conditioned by variable pressure and abrasive flow rate conditions, 
are presented in Fig. 3a. Modeling effects are shown in a Fig. 3b. In this case, it can be also 
observed that modeling effects are compatible with lab studies. The greatest discrepancy is 
observed at the maximum pressure and abrasive flow rate. In this case standard discrepancy 
between modeled and laboratory values does not go beyond 2.89mm. 

 
Fig. 4a depicts a laboratory study on limestone cutting with the use of 50mm long nozzle while 
Fig. 4b depicts artificial neural networks modeling of that process. Here also a great modeling 
and lab studies compatibility is observed. Greatest discrepancy takes place in case of extreme 
variable values and does not exceed 8%. At maximum cut depth deviation does not exceed 1mm. 
In this case standard discrepancy between modeled and laboratory values does not go beyond 
3.21mm. 

 
Cutting with the use of 75mm long nozzle is presented in Fig. 5a, while its artificial neural 
network modeling is shown in graph 5b. What can be observed here is, that the modeling is 
compatible with the laboratory studies (best compatibility at the extreme values). Diversion 
character is somewhat different, but the values of a maximum cut depth (diversion not exceeding 
2mm), at the abrasive flow rate of 80g/s and the nozzle diameter at 2mm, are approximate. With 
the maximum nozzle diameter, the smallest cut (approx. 33mm) was achieved at the minimum 



abrasive flow rate. In this case standard discrepancy between modeled and laboratory values 
does not go beyond 4.37mm. 
 
A laboratory study on cutting with the use of 100mm long nozzle is presented in Fig.6a, while its 
artificial neural network modeling is presented in Fig. 6b. In this range, modeling effects are also 
compatible with lab studies. Best compatibility was achieved at the low working nozzle 
diameters and low abrasive discharge. Main treatment parameter – cut depth – peaks at the 
maximum abrasive flow rate and minimum working nozzles diameters. In this case standard 
discrepancy between modeled and laboratory values does not go beyond 3.21mm.  
 
 
4. SIMULATION OF THE PROCESS 
 
The artificial neural networks use in the cut depth designating, give similar estimates in every 
considered case. The divergences do not go beyond 6%. The remaining parameters modeling 
results do not exceed 5%. In some cases, the discrepancy is at 10%. Standard discrepancy 
between modeled and laboratory values is included in the interval from 2.19 to 3.42mm. In most 
of the cases, the variation character due to the artificial neural network modeling was compatible 
with the results obtained in empirical way. This will allow application of this model [7] to 
forecast cutting results for all the variable machining parameters. 
  
4.1. Impact of traverse speed on cutting depth 
 
On the bases of obtained results it can be stated that in the whole range of parameters the depth 
of cut is inversely proportional to the cutting speed (Fig. 2.). Maximum depth of cut was 
obtained at the minimum traverse speed of 1mm/s and this was accepted as the optimum speed. 
 
4.2 Impact of pressure on cutting depth 
 
On the bases of obtained results it can be stated that in the whole range of tested parameters the 
depth of cut is either proportional to the working pressure (Fig. 2.) or that the highest pressure 
will result in the greatest cutting depth (Fig. 3.). Optimum working pressure will be maximum 
pressure, in this case equal to p=28MPa. This pressure was used for further simulation work. 
 
4.3 Impact of abrasive flow rate on cutting depth 
 
The optimum for this parameter is not as obvious as for the previous two. On the bases of results 
shown in Fig’s 3&4 it could be concluded that the optimum flow rate is ma=70g/s but results 
obtained and shown in Fig’s 5&6 allow only to conclude that increasing the abrasive flow rate 
results in only marginal increase in cutting depth. 
 
For a 50mm long Focusing Tube the relationship of the abrasive flow rate to the cutting depth is 
linear and inversely proportional. Increasing the length of the Focusing Tube decreases this 
relationship leading to flattening of the graph which is greatest for a 100mm long Focusing Tube. 
 



On the bases of those results the optimum abrasive flow rate was established to be not less than 
70g/s. 
 
4.4 Impact of Focusing Tube length and diameter on cutting depth. 
 
In the case of the shortest length Focusing Tube l=50mm the cutting depth is almost independent 
of the diameter (Fig. 6.) in the whole range of abrasive flow. For l=70mm (Fig. 7.) we can 
observe a definite relationship between the depth of cut and diameter of the Focusing Tube for 
the whole range of the abrasive flow rates. Depth of cut increases with the increase of Focusing 
Tube diameter. For the longest Focusing Tube l=100mm (Fig. 8.) this relationship is even 
stronger. 
 
Observing relationship between the Focusing Tube’s length and diameter and depth of cut 
(Fig. 9.) we observe that the optimum length is 75mm for the whole range of abrasive flow rates. 
This is least noticeable for low flow rates to the extent that for the lowest values it approximates 
shorter Focusing Tubes. 
 
Also in examining the influence of the abrasive flow rate and Focusing Tube length with varying 
diameters on the cutting depth (Fig. 9.) we observe that the optimum length is l=75 for the whole 
range covered in this analyses. 
 
In the whole range of this analyses maximizing the Focusing Tube diameter resulted in cutting 
depth increase and for this reason the optimum diameter is f=2.75. 
 
 
5. SUMMARY 
 
On the bases of analyses using artificial neural networks we can conclude that the optimum 
cutting parameters from the perspective of maximizing cutting depth are as follows: 
 

• Pressure p=28MPa, 
• Traverse Speed V=1mm/s, 
• Abrasive Flow Rate not less than 70g/s, 
• Length of Focusing Tube l=75mm, 
• Diameter of Focusing Tube  =2.75mm 
 

Neural networks are a very good tool for simulating abrasive cutting jet. 
 
The next step will be a comparison of results obtained from the simulation with actual abrasive 
cutting.  
 



REFERENCES 
 
[1] Perec A., Dżuga G., Rużyło M.: The use artificial neural networks in modelling the 

highpressure, suspensive waterjet cutting process of marble. 18th International Conference 
on Water Jetting. Gdańsk 2006. 

[2] Perec A., Dzuga G., Ruzylo M: The use of artificial neural networks in modelling the 
highpressure, suspensive waterjet cutting process of syenite. First International Conference 
on Neural Networks and Associative Memories 2006 (NNAM 2006) 2006 Mexico City 

[3] Perec A.., 2001, Investigations of limestone hydroabrasive, huspensive waterjet cutting 
intensification. 1-st Int. Conf. on Water Jet Machining WJM 1988. Cracow, Poland 

[4] Perec A.: The effectivenes of hydroabrasive suspensive jet cutting of the rock. 2005 
WJTA American Waterjet Conference. Houston, Texas, USA 2005, Paper 4B-1 

[5] Srinivasu D.S., Ramesh B N, Srinivasa Y.G. Louis H., Peter D., Versemann R: 
Genetically Evolved Artifcial Neural Networks Built with Sparse Data for Predicting 
Depth of Cut in Abrasive Waterjet Cutting, 2005 WJTA American Waterjet Conference. 
Houston, Texas, USA 2005, Paper 5A-4. 

[6] Vijay M.M., 1989, Evalution of abrasive-entreined water jets for sloting hard rocks. 5th 
American Water Jet Conference. Toronto, Canada. 

[7] Yang L., Peng Z., Tang C., Zhang F.: Artificial Neural Network Model of Abrasive 
Waterjet Cutting Process, Mechanical Science and Technology 2004, Vol.23, No.2, p.218-
220. 

[8] Zurada J., 1992: „Introduction to Artificial Neural Systems” West Publishing Company, 
St. Paul, New York, Los Angeles, San Francisco, USA. 



GRAPHICS 

 
 

Input layer Hidden layer Output layer 
 
Figure 1. Artificial Neural Network schematic diagram 
 
 

 

a) laboratory analysis b) modeled with the use of ANN 
Figure 2. Influence traverse speed and pressures onto depth of cutting:  

 



a) laboratory analysis b) modeled with the use of ANN 
Figure 3. Influence abrasive flow rate and pressures onto depth of cutting 
 
 

a) laboratory analysis b) modeled with the use of ANN 
Figure 4. Influence abrasive flow rate and nozzle diameter about length 50mm onto depth of 

cutting. 
 
 

a) laboratory analysis b) modeled with the use of ANN 
Figure 5. Influence abrasive flow rate and nozzle diameter about length 75mm onto depth of 

cutting 



a) laboratory analysis b) modeled with the use of ANN 
Figure 6. Influence abrasive flow rate and nozzle diameter about length 100mm onto depth of 

cutting 
 
 

a) b)
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Figure 7. Simulation of influence abrasive flow rate and nozzle diameter about length: 

a) 50mm, b) 75mm, c) 100mm, onto depth of cutting 
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c) d)
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Figure 8. Simulation of influence diameter and length of nozzle onto depth of cutting for: 

a) 50g/s, b) 60g/s, c) 70g/s, d)80g/s, e) 90g/s, abrasive flow rate. 



 

a)  
b)

c) d)  
Figure 9. Simulation of influence nozzle length and abrasive flow rate onto depth of cutting for: 

a) 2.00mm, b) 2.25mm, c) 2.50mm, d)2.75mm, nozzle diameter. 


