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ABSTRACT 
 

Self-resonating water jet has been the subject of interest for researchers. The inherent frequency 
of Helmholtz Resonator is one of the important parameters for design of self-resonating water jet 
nozzle device. A new parametric model for prediction of the inherent frequency of Helmholtz 
resonator used in the field of water jet technology was proposed in this paper. Development of the 
model was based on the assumptions that the length and the diameter of Helmholtz resonating 
chamber and the length of the straight pipe segment of water jet nozzle are in the same order of 
magnitude. In comparison with the existing parametric model, the assumptions are more 
reasonable and the physical model on which the new parametric model was developed is in good 
agreement with the real configuration of Helmholtz resonator found in self-resonating water jet. 
As a result, the new model was expected to be more accurate in prediction of the inherent 
frequency of Helmholtz resonator.  
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1. INTRODUCTION 
 
Compared with continuous high pressure water jet, pulsed high water jet has higher jetting 
efficiency. The principle of self-resonating was widely used for generating the pulsed water jet. 
The inherent frequency of the Helmholtz resonator is the key parameter for the self-resonating 
pulsed water jet technology. Fluid self-resonance occurs under the condition that the induction 
frequency (pressure agitation frequency) is consistent with the inherent frequency of Helmholtz 
resonator. Therefore, determination of the inherent frequency of Helmholtz resonator is the 
interested subject in this field.  
 
The widely used mathematical model for prediction of the natural frequency of Helmholtz 
resonator was given by [1]: 
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Where f is the inherent frequency of Helmholtz resonator, A1 is the water nozzle diameter, L1 is 
the length of inlet nozzle’s straight pipe segment, D1 is the diameter of the inlet nozzle, D2 is the 
diameter of the resonating chamber, and c* is the overall velocity of agitation wave in elastic tube. 
The definition of c* is given by: 
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Where a is the wave velocity of in water and c0 denote the wave velocity of in elastic tube wall.  
 
The physical model from which Eq. (1.1) was developed is shown in Fig. 1. This model 
development was based on the assumption that self-resonating chamber is a concentrated  

 
Parameter, the length of the chamber is much less than its diameter and can therefore be neglected. 
This assumption, however, does not agree well with the typical structure of self-resonator used in 
self-resonating water jet technologies, consequently the model is expected to have some deviation 
in predictions. Therefore, development of a new prediction model with higher prediction accuracy 
is required and provides the motivation for the study presented in this paper.  



2. SOLUTION OF GOVERNING EQUATIONS OF TRANSIENT FLOW 
 
2.1 Governing equations of transient flow in tube 

 
The segment of a round-sectioned tube with A being its sectional area was chosen as control 
volume (see Fig. 2). The length of control volume is ∆x, the abscissa of inlet plane is x, the 
abscissa of outlet plane is x+∆x. It is apparent that x and ∆x are independent of time t, ρ is the 
density of water, and u is the axial velocity of the fluid. 
 
In the case of flow in the tube with round cross section, uy=uz=0, ux=u=u(x), the cross sectional 
area is a function of x and t, i. e., A=A(x,t), owing to the elasticity of the tube wall. The continuity 
equation for the elastic tube can therefore be written as: 
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It was assumed that flow was continuous, incompressible, isothermal, frictionless, one 
dimensional, without body forces, and flowing within the tube of round cross section, 
Navier-Stokes equation can be written as: 
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In the case of transient flow and fluid resonance, inertia force becomes the major factor and the 
viscosity of the fluid can be neglected. Therefore, Eq. (2.1) and Eq. (2.2) are the governing 
equations for the study of transient flow in the tube. 
 
2.2 Linearization of the governing equations 

 
The velocity of the wave in water represents the influence of water compressibility upon the 
propagating velocity of the agitation wave, which is defined as: 
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The velocity of the wave in elastic tube wall resents the influence of the elasticity of tube wall 
upon the propagating velocity of the agitation wave, which is defined as: 
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According Eq. (2.3), Eq. (2.4) and Eq. (1.2), the continuity equation (2.1) can be transformed into: 
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Where q=ρAu is the mass flow rate. Let qc denote integral of the first term of Eq. (2.5) along the 
tube segment L. When L is small, the first term can be considered to be constant. Then one 
obtains: 
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The fluid capacitance per unit tube length is defined as: 
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The final form of the linearized continuity equation is given by: 
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Multiply the continuity equation (2.1) by u, and the Navier-Stokes equation (2.2) by ρA, then 
added together, Eq. (2.2) becomes: 
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Assuming that the flow velocity of the fluid is much less than the propagating velocity of the 
agitation wave, the second term of migration acceleration of ∂qu/∂x in Eq. (2.9) can be neglected. 
Hence the Navier-Stokes equation (2.9) is linearized as:  
 

x
p

t
ql

∂
∂−=

∂
∂        (2.10) 

 
Where l is the fluid inductance defined by: 
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Where ∆p is the pressure drop along the tube segment L. The ideal fluid one-dimensional 
linearization governing equations for transient flow in the tube are achieved by a sequence of 
mathematical manipulations, as given by Eq. (2.8) and Eq. (2.10). 
 
2.3 Solution of governing equations with fluid impedance method 

 
According to the assumptions, the pressure p can be expressed as: p=p(x,t) and mass flow rate as: 
q=q(x,t). The corresponding Laplace transformations can be given as: P(x,s)=L[p(x,t)], and 
Q(x,s)=L[q(x,t)]. The initial conditions are: 
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Alternating Eq. (2.8) and Eq. (2.10) by Laplace transformation yields: 
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Eq. (2.13) is the linearized and Laplace-transformed governing equations. 
 
The fluid resistance is defined as: R=∆p/q.  Its Laplace transformation of Z=P/Q is noted as the 
fluid impedance. The fluid capacitance C representing fluid compressibility and tube wall’s 
elasticity, as well as the fluid inductance l caused by the unsteady flow, will exhibit reactance, as 
the fluid flowing through the pipe system. Laplace transformation of expression (2.7) (fluid 



capacitance) leads to C=Qc/sP. Similarly, the capacitive reactance is defined as Z*c=P/Qc=1/Sc. 
And by Laplace transformation of Eq. (2.11) we obtain l=P/sQ. Thus the definition of inductive 
reactance is: Zl=P/Q=ls. 

 
Under the boundary conditions of x=0, P1=P(0,s), Q1=Q(0,s): solution to the governing equation 
(2.13) is: 
 

( )

( )









+−=

−=

*
1

*

1

*
1

*
1

,

,

c
sxchQ

c
sxsh

Z
PsxQ

c
sxshQZ

c
sxchPxsP

c

c

    (2.14) 

 
Where Zc=c*/A is the characteristic impedance of the tube. At the end of the tube (x=L), the 
pressure and flow rate are: 
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Substituting Eq. (2.15) into Eq. (2.14), and letting s=jω, by algebraic manipulations we obtain: 
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And further we can obtain the solution to the governing equation for one dimensional transient 
flow in the tube by fluid impedance method2: 
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Where Z1=P1/Q, Z2=P2/Q, are the fluid impedance at the beginning and the end of the tube 
respectively, ω is the circular frequency. 
 



2.4 The inherent frequency of Helmholtz resonator 
 

The typical structure of Helmholtz resonator found in self-resonating water jet technologies 
indicates that the length and diameter of resonating chamber and length of the straight pipe 
segment of the jet nozzle are same order of magnitude. The physical model of Helmholtz 
resonator is shown in Fig. 3. The straight pipe segment stands for the water jet nozzle’s straight 
segment.  
 
The length of straight segment is L1, the diameter D1, the characteristic impedance Zc1. Z1 and Z2 
are the fluid impedance at the beginning and the end of straight segment respectively. The length 
of Helmholtz resonator is L2, the diameter D2, the characteristic impedance Zc2. Z3 and Z4 are the 
fluid impedance at the beginning and the end of the chamber respectively.3 
 
Applying Eq. (2.17) to the straight pipe segment, then we obtain: 
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Applying Eq. (2.17) to the Helmholtz chamber in the same way, we obtain: 
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The conditions under which resonance takes place in the pipe system can be described by: Z1=0 
and Z4= ∞, which was substituted into Eq. (2.18) and Eq. (2.19) respectively, and then we obtain:  
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Where ω=2πf, f is the inherent frequency of Helmholtz resonator. Since Eq. (2.20) and Eq. (2.21) 
are related by: Z2=Z3, the following relation was achievable: 
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Where Zc1=c*/A1 and Zc2=c*/A2 are the characteristic impedance of the straight pipe segment 

and Helmholtz resonating chamber, and the corresponding cross sectional area are 42
11 DA π=  

and 42
22 DA π= . Since L1 and L2 are same order of magnitude, and much less than the overall 

velocity of agitation wave c*, Eq. (2.22) can be simplified into: 
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Substituting Eq. (2.23) into Eq. (2.22), the parametric model of the inherent frequency of 
Helmholtz resonator is obtained as:  
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Where the penalty parameter λ is the ratio of the straight pipe segment to the diameter of the water 
jet nozzle, i.e. λ=L1/D1. For self-resonating water jet, Strouhal number is given by: 
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Where f is the dominant frequency of the separated vortices, u is the water jetting velocity. Mach 
number is defined as M=u/c*. Combining Eq. (2.24) and Eq. (2.25) and eliminating f, we can 
therefore obtain the relationship between the structural parameters and the Strouhal number and 
Mach number, given by: 
 

2

1

1

2

2
1

L
D

MSD
D

dλπ
=      (2.26) 

 



3. CONCLUSIONS 
 
A new parametric model for predicting the natural frequency of Helmholtz resonator was 
developed, and the relationship between the structural parameters and Strouhal number and Mach 
number was obtained. The assumptions on which the model development based agree with 
Helmholtz resonator used in self-resonating water jet, and is expected to be more accurate in 
predictions. The obtained results would be of help to understanding the mechanism of 
self-resonating water jet. 
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6. NOMENCLATURE 
 
f -Inherent frequency of Helmholtz resonator 
A1-Water nozzle diameter 
L1-Llength of inlet nozzle’s straight pipe segment 
D1-Diameter of the inlet nozzle 
D2-Diameter of the resonator chamber 
c*-Overall velocity of agitation wave in elastic tube 
a-the wave velocity of in water  
c0-the wave velocity of in elastic tube wall  
ρ-Density of water 
u-Axial velocity of the fluid. 
q-Mass flow rate 



C-Fluid capacitance per unit tube length 
l-Fluid inductance 
R-Fluid resistance 
Z-Fluid impedance.  
Zc-Characteristic impedance of the tube 
ω-Circular frequency. 
λ-Ratio of the straight pipe segment to the diameter of the water jet nozzle 
Sd- Strouhal number 
M-Mach number 
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Fig. 1 The existing physical model of Helmholtz resonator 
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Fig. 2. Control volume in the tube with round cross section 
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Fig. 3 Physical model of Helmholtz resonator 
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