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ABSTRACT 
 
In this paper, genetically evolved Artificial Neural Networks (ANN) built with sparse data for 
predicting the depth of penetration of Abrasive Water Jets (AWJs) into the material is proposed. 
Sparse data was collected during the cutting trials on Steel 1.4301 and AlMgSi0.5 alloy with 
AWJs considering various process parameters like jet pressure, abrasive mass flow rate, jet 
traverse rate, diameter of focusing nozzle, stand of distance, number of passes and type of 
abrasive material. The data was generated by employing abrasive water injection jet (AWIJ) and 
abrasive water suspension jet (AWSJ) systems. In developing ANN using conventional Back 
Propagation (BP) learning algorithm, random selection of parameters such as weights, learning 
rate parameter, momentum parameter is quite tedious and error prone. Hence, the proposed 
method attempts to select the weights by Genetic Algorithms (GA) in order to develop ANN in 
an optimal manner. Performance of the proposed method is compared with that of ANN built 
with BP learning algorithms and regression models, both built with abundant data. Finally, the 
effectiveness of the proposed method for situations with sparse data is demonstrated. 
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1. INTRODUCTION 
 
Abrasive water Jet (AWJ) Cutting is an unconventional cutting process influenced by many 
process parameters like hydraulic, abrasive, mixing and cutting parameters. Modeling of such 
complex processes assumes significance in view of their use for predicting the performance of 
process and controlling the process. Among the different methods of modeling, analytical, 
empirical and semi empirical methods are well known. For AWJ cutting process, analytical 
models developed so far are based on several theories such as theories of erosion, fracture 
mechanics etc. and with several assumptions on material related parameters [1-2]. A theoretical 
model for predicting the depth of cut was based on Finnie�s theory of erosion with a single 
abrasive particle [3-4]. An analytical model developed for predicting the depth of cut based on 
the concepts of micro cutting, inter granular fracture at shallow angles and near orthogonal 
angles of impact [6]. All these analytical models are far from reality due to various assumptions 
made in simplifying the modeling of cutting process. On the other hand, attempts made to 
develop empirical and semi empirical models are based on the data collected from experiments. 
A semi empirical model for predicting the depth of cut in case of different types of granites was 
proposed [7]. A semi-empirical model for predicting the depth of penetration of jet in cutting of 
polymer matrix composites was developed [8]. These empirical and semi empirical models 
presume the general form of the model and are developed using dimensional analysis and 
regression analysis. Limitations of the above techniques demand the need to develop an efficient 
and generic approach that is free from process as well as material related assumptions. Towards 
this, the models based on AI techniques such as expert systems, ANN, fuzzy logic etc. are found 
to be more robust and flexible [9]. Models based on soft computing approaches such as fuzzy, 
ANN approaches can easily capture the process non linearity with out considering the physical 
phenomenon of the process. A very few attempts were made to employ fuzzy, fuzzy-genetic and 
neuro-genetic approaches for modeling of AWJ cutting process [10-13]. ANN and fuzzy logic 
were employed for developing the relation between jet pressure, traverse rate, stand of distance 
as input parameters and strip width cleaned as an output parameter in waterjet cleaning process 
[10]. A model was developed for predicting the depth of cut in milling with AWJs using fuzzy 
set theory [11]. In this approach, the data obtained from the experiments conducted by varying 
jet pressure, abrasive mass flow rate, jet traverse rate and nozzle diameter were used to build an 
inference engine for fuzzy model. A fuzzy-genetic approach was proposed for selecting optimal 
process parameters in achieving the desired depth of cut with AWJs [12]. A Neuro-Genetic 
approach was proposed for selecting optimal process parameters in achieving the desired depth 
of cut considering the variation in bore diameter of focusing nozzle [13]. In general, fuzzy 
modeling demands the selection of suitable membership function with parameters for any 
specific application. Further, these parameters need to be adjusted based on the obtained results. 
Moreover, the development of rule base requires expertise in AWJ cutting process. All these 
models work well when they are built with abundant data generated from planned experiments. 
Contrastingly, job shop environment processes different materials at different times using 
different process parameters. Such data generation is unplanned and is known as �Sparse Data�. 
Any model that can be built with sparse data will be of immense use for the job shop applications 
since such a model can be used to select process parameters whenever similar materials need to 
be processed with AWJs. Therefore, it is worthwhile to consider the development of models 
considering the sparse data. It is well known that ANN is a proven modeling technique in 
capturing the knowledge of complex processes due to their massively parallel processing, 



 

learning and noise suppression capabilities. Due to this, the present work considers ANN 
modeling technique for building the models for sparse data. However, this modeling needs the 
selection of suitable parameters for the network structure i.e. weights, number of hidden layers, 
number of hidden nodes in each layer, learning rate parameter and momentum parameter etc. 
which is a tedious and time consuming process. Moreover, conventional BP learning algorithm 
used for training ANN suffer from the drawback of random selection of initial weights which can 
produce non-optimal structure of ANN.  Further, the gradient descent search algorithm cannot 
handle discontinuous connection weights [14-15]. Hence, there is a need to find a robust search 
technique that can choose optimal weights for evolving ANN structure. A combined genetic-
back propagation learning algorithm and encoded BP parameters in the individuals together with 
the network structure for two application domains, digit recognition and logic functions was 
proposed [16]. It was shown that a single layer network is enough to form an arbitrarily close 
approximation to any nonlinear decision boundary [17].  
 
In this paper, an attempt is made to employ GA based guided search technique for choosing 
optimal weights in developing ANN models for sparse data generated continuously from AWJ 
cutting process. 
 
 
2. METHODOLOGY 
 

(i) To develop regression and ANN models built with conventional BP and GA based 
training algorithms. 

 
(ii) To assess their performance in predicting the depth of cut in AWJC by considering 

abundant data generated from planned experiments. 
 

(iii) To demonstrate the feasibility of ANN models with GA based weight selection for 
situation where sparse data is generated during AWJ cutting process. 

 
 

3. REGRESSION AND ANN MODELS FOR PREDICTION OF DEPTH OF CUT  
 
In order to develop regression and ANN models for predicting the depth of cut with AWJs, the 
experiments were conducted on black granite with trapezoidal section using full factorial 
experimentation i.e. 53 

=125 by varying each parameter at 5 levels i.e. jet-pressure (60, 130, 200, 
270, 350 MPa), jet traverse rate (30, 70, 150, 230, 325 mm/min) and abrasive mass flow rate (30, 
50, 90, 130, 170 g/min) [12]. From this, 70% data was randomly selected for developing the 
models and the remaining 30% data was used for validating the models.  
 
3.1 Regression Model 
 
For developing the regression model, multiple regression procedure was employed. The general 
form of regression equation is 
 
                                                            h = K pa mf

b vc + d                                                            (1) 
 



 

The development of model considered certain data set, using which the various constants and 
exponents were determined. The model was validated with the remaining data obtained from the 
experiments.  
 
3.2 ANN Model with BP Learning Algorithm 
 
For developing ANN model with BP learning algorithm, the data generated from the full 
factorial experiments was considered with jet pressure, abrasive mass flow rate and jet traverse 
rate as input parameters and depth of cut as response variable. Fig.1 shows the general structure 
of ANN. BP algorithm uses gradient based search procedure to select the weights that can give 
the minimum error in prediction of depth of cut. To select the weights, the following relation was 
used. 
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In order to select the suitable number of hidden nodes, different networks were developed by 
varying the number of hidden nodes in the hidden layer from 1 to 30 and keeping the other 
parameters like learning rate parameter, momentum parameter and number of epochs constant at 
0.001, 0.1, and 600 respectively. BP algorithm is a serial search technique that randomly selects 
one point in the search space of weights and updates these weights continuously. This process of 
initial random selection of weights will affect the performance of the network. In order to study 
the influence of initial random choice of weights, the network was initialized with 30 different 
initial weights. Other network parameters such as number of hidden nodes, learning rate 
parameter, momentum parameter and number of epochs were kept constant at 5, 0.01, 0.1, and 
600 respectively. 
 
3.3 Development of ANN Model Using GA Based Weight Selection 
 
One of the important issues in the development of ANN model is the selection of suitable 
weights for the network structure. Conventional way of selecting the weights using BP learning 
algorithm does not yield optimal selection of weights for the chosen structure of network. Hence, 
the present work proposed to use GA based weight selection for optimizing the weight selection 
for training ANN. In this method, GA starts with certain weights initially for all the points and 
then searches simultaneously for the optimal weights. Each chromosome represents all the 
connection weights including the biases for the ANN. The sample 2-2-2 network structure with 
weights representation is shown in Fig.2. By considering these weights and training data set, 
Mean Absolute Error (MAE) in prediction of depth of cut is estimated using the equation (3). 
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By subjecting the chromosomes to genetic operations like crossover and mutation, new 
chromosomes are generated. This process is continued until the chromosomes that give MAE 
less than or equal to a predefined MAE.  



 

3.3.1 Coding of Weights 
 
In this work, each chromosome is represented in binary form. Sample weight matrices coded and 
represented in the form of a chromosome is shown in Fig.3. For the l-m-n (l-input nodes, m-
hidden nodes, n-output nodes) ANN structure, the total number of weights to be determined is 
(l+n)m. Hence, each weight is considered as a gene with k-bits length. The total length of 
chromosome is (l+n)m times k-bits. Each weight of the ANN including the biases was decoded 
with a precision of 10 bits length giving 4 decimal points accuracy in representation of weights 
in the range of 0 to 1. 
 
3.3.2 Objective Function  
 
The objective of the present work is to select the weight matrices for the specific network 
structure, which will give minimum prediction error. In this study, mean absolute error (MAE) 
between predicted and experimental depth of cut is selected as a performance measure. So, the 
objective function is minimization of MAE with the selection of suitable weight matrices. Fitness 
values of each individual in the population are calculated using the equation (4). 
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Roulette-wheel selection procedure was used to select the good strings in the population to form 
the mating pool for the next generation.  
 
In developing the ANN model with GA based weight selection using abundant data, a single 
hidden layer network with 3-4-1 network structure was considered. The training and validating 
data set considered for developing ANN model with BP learning algorithm was used for this 
modeling. In developing ANN models with GA based weight selection for the sparse data 
obtained from AWIJ and AWSJ systems, the total data set was divided into different data 
clusters based on the criterion of having certain sets of data with different combinations of 
process parameters. In Table 1, the details of each data cluster are given. From each of these 
clusters, 70% of the data was selected for generating the models and the remaining 30% data was 
used for validating the developed models. Input parameters considered for each modeling, the 
total size of data set for each cluster, the size of data set selected for developing the models and 
for their validation, the type of materials cut and the type of abrasive material used are given in 
Table 2. In selecting the number of hidden nodes, the models with different hidden nodes were 
tried out and the one that gave minimum MAE in prediction was selected as the best structure of 
ANN. The number of hidden nodes selected for each model used with sparse data is shown in 
Table 2. Similarly, the same sparse data was used for developing the regression models also.  
 
For GA based weight selection, the population size of 20 individuals was considered with each 
individual chromosome having a length based on the number of hidden nodes. Each gene, 
specifying the weight in the range of 0 to 1, was represented with 10 bits, giving a solution with 
precision of 4 decimal points for each weight. For different genetic operations such as crossover 
and mutation, single point cross over with crossover probability, 0.8 and bitwise mutation with 



 

mutation probability, 0.001 were chosen respectively for the purpose of achieving the MAE less 
than or equal to zero as shown in Fig.11. 
 
 
4. RESULTS AND DISCUSSION 
 
In this section, the first part deals with the assessment of ANN results obtained with BP learning 
algorithm and regression model for predicting the depth of cut considering the abundant data. 
The suitability of ANN models with GA based weight selection in predicting the depth of cut 
was studied with abundant data. The second part deals with the assessment of ANN models with 
GA based weight selection in predicting the depth of cut with sparse data. 
 
4.1. ANN and Regression models with Abundant Data 
 
Among the 125 sets of data from the experiments, the size of data considered for determining the 
constants and exponents in the regression equation (1) is 88, the remaining 37 sets of data were 
used for validating the model. The regression equation is 
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From the equation (4), it can be observed that the performance trends match well with those 
trends presented by the previous researchers [18]. Positive exponents for pressure and abrasive 
mass flow rate indicate an increase in depth of cut with an increase in pressure and abrasive mass 
flow rate and the negative exponent for traverse rate indicates the decrease in depth of cut with 
an increase in traverse rate. The regression model was validated by predicting the depth of cut 
for 33 sets of data. Fig.4 shows the comparison of the experimental results with the results 
predicted with the model. Fig.5 shows the variation of error in predicting the depth of cut using 
regression analysis and mean and standard deviation of this error distribution is 2.26 and 2.92 
respectively.  
 
In Fig.6, the variation of MAE in predicting the depth of cut with different hidden nodes is 
shown. The variation in mean and standard deviation of the prediction error are shown in Fig.7. 
From the results presented in Fig.7, it can be observed that an increase in the number of hidden 
nodes in the hidden layer beyond 10 is found to deteriorate the performance of ANN. This can be 
attributed to an increase in the size of network that will over fit the data and give poor 
performance [15]. Though the network with 4-hidden nodes has less mean error, its standard 
deviation is high compared to the network with 5-hidden nodes. Hence, the network with hidden 
layer of size 5-hidden nodes was chosen as an optimum network for this study. In Fig.8, the 
depth of cut predicted with 3-5-1 network structure is plotted against the experimental results. 
Fig. 9 shows the variation of error in predicting the depth of cut using BP learning algorithm. 
Mean and standard deviation of this error distribution is 2.24 and 2.55 respectively. In Fig.10, the 
MAE in prediction of depth of cut using ANN with different initial weights is shown. From this, 
it can be observed that the MAE is found to vary with different initial weight chosen for deriving 
the ANN structure. This can be attributed to the fact that the weights may not change during the 
training phase due to their value being stuck at local minima [14-15].  



 

 
Even though the trend in variation of depth of cut using regression modeling with the process 
parameters is the same as that observed with ANN models, accuracy of prediction with 
regression models is inferior to that of ANN models. This clearly demonstrates the suitability of 
ANN model for prediction of depth of cut in complex processes like AWJs. However, ANN with 
BP has the draw back of choosing non-optimal weights during training phase. Similarly, learning 
rate parameter and momentum rate parameter are also chosen randomly. 
 
Fig.12 shows the depth of cut predicted by ANN with GA based weight selection for abundant 
data generated from full factorial experiments. Fig.13 shows the variation of error in predicting 
the depth of cut and mean and standard deviation of this error is 1.87 and 2.38 respectively. 
These values are smaller than those observed from ANN trained with BP learning algorithms and 
regression models. This can be attributed to the nature of GAs that will search parallelly through 
the total weight space and find out optimal/near optimal weights. This clearly shows the 
suitability of GA based weights selection for the ANN in accurate prediction of depth of 
penetration with AWJs. 
 
4.2 ANN Model with GA Based Weights Selection with Sparse Data 
 
In order to study the suitability of ANN model with GA based weight selection for sparse data, 
this model was developed by considering the sparse data presented in Table 1. Table 3 shows the 
mean and standard deviation of the error in prediction of depth of cut with ANN using GA based 
weight selection and regression models considering the sparse data. Even though prediction 
performance of regression models is comparative to ANN models with some data sets, these 
models are inferior to ANN with GA based selection in terms of overall performance. This can 
be observed from the mean and standard deviation of the error in prediction of depth of cut for 
each model. The standard deviation of all the models developed by the proposed approach is less 
than that noticed with regression analysis except for the model 4. Moreover, this deviation is 
considerably large. Thus, this study clearly demonstrates the effectiveness of ANN with GA 
based weights selection for modeling the AWJ cutting process with sparse data. 
 
 
5. CONCLUSIONS 
 
This paper covered the procedure for developing ANN based models considering the 
continuously available unplanned data, i.e. sparse data from AWJ cutting. The proposed ANN 
developed with GA based weight selection does not demand for an expensive and time 
consuming planned experiments. The investigations showed the suitability of GA based weight 
selection process for training instead of BP learning algorithm for building ANNs. It has also 
shown the applications of regression analysis when the functional form can easily be derived 
with abundant data. When the data is sparse, the functional form of the process cannot be known 
easily thus illustrating the flexibility of the proposed method for building the prediction models 
for AWJ cutting. As the present approach considered the selection of optimal/near optimal 
selection of weights with GA, future attempts can be directed towards using such an approach for 
selecting the network topology so that ANN model can be developed easily.  
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NOMENCLATURE 
 
h             - Depth of Cut 
p             - Jet Pressure 
mf           - Abrasive Mass Flow Rate 
v             - Traverse rate  
K, a, b, c, d  - Regression Constants and Exponents 
MAE    - Mean Absolute Error  
hai                - Actual depth of cut for the ith element in the validating dataset 
hpi           - Predicted depth of cut from the ANN model developed for the ith  element in  

   the validating dataset 
n             - Size of Testing Data Set 
NoP        - Number of Passes 
X   - Mean of the error distribution in prediction of the depth of cut 
S  - Standard deviation of the error distribution in prediction of the depth of cut 
ζ  - Limit on MAE 
F  - Fitness function  



 

 
 

Table 1. Process Parameters Employed for Sparse Data Generation in AWJ Cutting 

 
 
 
 
 

 Process Parameters 

Model 
No 

Pressure 
(MPa) 

Diameter of 
Focusing 

nozzle 
(mm) 

Stand of 
distance 

(mm) 

Abrasive Mass Flow Rate 
(kg/min) 

Traverse Rate   
(mm/min) 

Number of 
Passes 

  

1 300 0.3 1.5 0.5-1-1.5-2-2.25-2.5 20-40-80-120- 
160-200 1 

2 100-150-200 0.6 5 0.13-0.43-0.45-0.49-0.73-0.78-1.07-1.23- 
1.25-1.6-1.7-2.32-2.37-2.4-2.49-3.18 

500-1000-1500- 
2000-2500 1 

3 100 0.7 2-5-10-20-40-
80-120-160-180 0.4-0.5-0.9-1-1.5-1.9-2.3-2.7-3.2 200 1 

4 100-150-200 0.7 5 1.5 50-100-200-500 1 
5 150 0.7 2 0.53-1.35-1.87-2.52-2.91-1.5 500-100-200-500 1 

6 150 0.7 2 0.53-0.62-1.14-1.35-1.53-1.6- 
1.87-2.08-2.2-2.52-2.81-2.91 200 1 

7 100-150-200 0.6 2 0.5-1-1.5 10-15-20-50- 
100-270-500-1000 

1-2-4-6-8- 
10-12-16-24 

8 100-150-200 0.7 5 0.4-0.43-0.53-0.55-0.8-0.9-1.35-1.45 
1.87-1.9-2.3-2.45-2.5-2.52-2.91-3.2- 200 1 

9 200 0.4-0.5- 
0.6-0.7 5 0.5-1-2-2.5 200 1 

10 100 0.7 2-5-10-20-40-
80-120-160 1 200 1 



 

 
Table 2. Details of Sparse Data Modeling 

 

 
 

Table 3. Mean and Standard Deviation of Error Distribution in Prediction of Depth of Cut with Sparse Data 
 

Model Number 
1 2 3 4 5 6 7 8 9 10 

 

Reg ANN Reg ANN Reg ANN Reg ANN Reg ANN Reg ANN Reg ANN Reg ANN Reg ANN Reg ANN 
X  2.30 3.22 4.49 7.56 16.79 21.5 7.69 2.15 7.8 7.91 4.12 2.13 11.06 15.07 14.81 19.04 3.58 4.33 42.75 52.67 
S 1.61 2.38 1.36 1.99 1.18 1.37 2.9 4.71 1.25 0.35 4.73 1.74 8.2 11.12 4.65 9.87 1.97 2.37 8.75 1.06 

Model Number Parameters 1 2 3 4 5 6 7 8 9 10 

Input Parameters mf , v mf , v, P mf , x P, v mf , v mf 
mf , v, P, 

NoP mf , P mf , df x 

Work Piece Material AlMgSi0.5 AlMgSi0.5 Steel 
1.4301 AlMgSi0.5 AlMgSi0.5 AlMgSi0.5 AlMgSi0.5 AlMgSi0.5 Steel 

1.4301 AlMgSi0.5 

Abrasive Material Olivin Barton  
HP 120 

Barton  
HP 120 

Barton 
HP 120 

Barton 
HP 120 

Barton 
HP 120 

Barton 
HP 80 

Barton 
HP 120 

Barton 
HP 120 

Barton 
HP 120 

Size of Total  
Data Set 32 85 19 14 9 15 46 40 16 8 
Size of Training  
Data Set 23 60 14 10 7 11 32 28 12 6 
Size of Validation  
Data Set 9 25 5 4 2 4 14 12 4 2 
Number of  
Hidden Nodes 4 5 5 4 5 4 8 5 5 3 
Type of Process AWIJ AWSJ AWSJ AWSJ AWSJ AWSJ AWSJ AWSJ AWSJ AWSJ 



 

 
 

 
 

Figure 1. General Structure of the ANN 
 

 
Figure 2. General Configuration of 2-2-2 ANN  

 
 

Chromosome  
 

Gene 1 Gene 2 Gene 3 Gene 4 Gene 5 Gene 6 Gene 7 Gene 8 
w31 w32 w41 w42 w53 w54 w63 w64 

10011 11011 11101 10011 11001 11111 10000 10101 
 
Figure 3. Sample Binary Coded Weight Matrices in the Form of a Chromosome 
 
  

.

.

.

P

.

.

.

h
v 

ma 

Input layer

Hidden Layer-2 

Output layer

Hidden layer-1 

Input Layer Hidden Layer Output Layer

w31 

w32 

w41 

w54 

w63 

w64 

w53 

w42 

1

2

3

4

5

6



 

0

10

20

30

40

50

60

0 5 10 15 20 25 30 35
 Experiment No.

D
ep

th
 o

f C
ut

, h
 (m

m
)

Regression Experimental

 
 
Figure 4. Comparison of Predicted Depth of Cut by Regression Analysis with the 
                 Experimental Results 
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Figure 5. Variation of Error in Prediction of Depth of Cut Using Regression Analysis 
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Figure 6. Variation of Absolute Error with Number of Hidden Nodes of the ANN 
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Figure 7. Variation of Mean and Standard Deviation of Prediction Error Distribution  
                 with Number of Hidden Nodes  
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Figure 8. Comparison of Depth of Cut Predicted by 3-5-1 Structured ANN Trained by  
                 Conventional BP with Experimental Results 
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Figure 9. Variation of Error in Prediction of Depth of Cut with 3-5-1 Structured  
                 ANN Structure Trained by Conventional BP 
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Figure 10. Variation of Error in Prediction of Depth of Cut with Specific Structure of 
                   ANN with Different Initial Weights 
 

 

 
 
Figure 11. Structure of the Proposed GA Based Weights Selection for ANN Model for 

       Predicting the Depth of Cut 
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Figure 12. Comparison of Depth of Cut Predicted by 3-4-1 Structured ANN Trained  
                   with GA Based Weight Selection with Experimental Results 
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Figure 13. Variation of error in prediction of Depth of Cut by ANN by 3-4-1 structure 
        with GA Based Weight Selection  
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