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ABSTRACT 
 
A practical mixture flow method is proposed for numerical simulation of high-speed cavitating 
flow by coupling a bubble cavitation model and a compressible two-phase mixture flow 
computation. Two-phase fluid media are treated as a mixture composed of a liquid and spherical 
gas bubbles dispersing in the liquid phase uniformly. Mean flow of the two-phase mixture is 
calculated by neglecting the slip between bubbles and the liquid phase under the assumption of 
locally homogeneous medium. Navier-Stokes equations for compressible fluids are used to 
describe the unsteady flow field of bubble-liquid mixture considering the compressibility of 
cavitating liquid caused by bubble expansion and contraction, and the RNG k-ε model is adopted 
for modeling of flow turbulence. The intensity of cavitation in a local field is evaluated by the 
volume fraction of gas phase varying with the mean flow. Submerged water jet flows in a Venturi 
nozzle are treated under different cavitation numbers. The result demonstrates that pressure 
decreases from the inlet to the throat corresponding to the flow convergence and cavitation 
occurs in the low-pressure region between the wall and the shear layer. Under the influence of 
cavitation the discharge coefficient decreases to about 60% when σ = 0.1 compared to the case 
of no-cavitating flow.  
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1. INTRODUCTION 
 
Cavitation is an important phenomenon often observed in variety of hydraulic systems such as 
nozzles and hydraulic machineries. Numerical simulation of cavitating flow is of great 
importance for performance prediction and efficient design of many engineering devices. 
Modeling of cavitation has been pursued for years and some useful methods have been 
developed. Egashira et al. (1) proposed a Two-Fluid Three-Pressure Model considering 
particularities due to the growth and collapse of bubbles, and it demonstrates a possibility to deal 
with the high-pressure jump caused by cavitation. The two-fluid approach adopted is rational by 
computing the liquid and gas flows one by one, but the computed flow fields strongly depend 
upon physical models used for evaluating the interaction between the liquid and bubbles. For the 
lack of such a general physical model, an extra effort is required for its applications. 
 
Cavitation usually takes place in low-pressure regions of relative high velocity and the size of 
cavitation bubbles is very small compared to its flow field. Bubbles and the working liquid and 
could be sufficiently well mixed and their relative motion in a small local area is often 
insignificant. With the aim of flow computation simplification the so-called two-phase flow 
approach treats the flows of liquid and gas together by assuming that the gas and the liquid 
phases flow at the same velocity. Owing to its convenience the equal-velocity approach has been 
widely applied by combined with certain cavitation models. Kubota et al. (2) developed a two-
phase bubble cavitation model by coupling a simplified Rayleigh-Plesset equation and an 
incompressible flow solver, where the bubble expansion is treated attentively but the mixture 
compressibility is actually neglected although the variation of mixture density is accounted. Iga 
et al. (3) advanced a compressible homogeneous mixture flow method by adopting a relation of 
the mixture sonic speed and the gas mass fraction derived under equal pressure assumption, 
where effects of bubble dynamics are neglected. Considering the difficulty of dealing with both the 
compressible and incompressible features coexisted in cavitating flows efficiently Peng et al. (4) 
developed a pressure-based procedure based on CCUP method, and it has been applied to the 
case of high-speed submerged water jets.  
 
Focused on the numerical prediction of cavitatiing flow, this paper presents a simplified 
compressible mixture flow bubble cavitation model by coupling a bubble cavitation model and a 
compressible mixture flow computation. Two-phase fluid media of cavitating flow are treated as a 
mixture of liquid and spherical gas bubbles which are supposed to disperse uniformly in the 
liquid. Mean flow of the two-phase mixture is treated by Navier-Stokes equations for 
compressible fluids under the assumption of a locally homogeneous medium and the flow 
turbulence is modeled by the RNG k-ε model. The intensity of cavitation in a local field is 
evaluated by the volume fraction of gas phase varying with the mean flow. As an example, 
submerged water jet flows in a Venturi nozzle are treated under different cavitation numbers, and 
the reliability of the computation model is confirmed by comparing the results of cavitating and 
no-cavitating flows. 
 
 



 

2. FLOW EQUATIONS AND NUMERICAL APPROACH 
 
2.1 Compressibility of Cavitating Two-phase Fluid Mixture 
 
The fluid media of cavitation flow are taken as a two-phase mixture of working liquid and 
cavitation bubbles. The gas phase is supposed to disperse in the liquid phase and its volume 
faction is denoted as αG. So, the liquid volume fraction is written to be GL αα −=1 . Then, the 
density of two-phase mixture can be defined as follows by volume averaging. 
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where ρ denotes the density and the subscripts L, G and m do the liquid phase, the gas phase and 
the mixture, respectively. Concerning the compressibility of the two-phase mixture, the variation 
of mixture density can be derived as follows by taking the differential of above equation. 
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Considering the continuity of the mixture flow, we arrange it to the following form.  
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Concerning the compressibility of the liquid phase the state equation in Tait form is employed.  
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where the subscript 0 denotes a reference state which is taken to be the atmospheric one. 
B=3.049×108 Pa, nL =7.15. Then, the compressibility of the liquid phase can be given by the 
following equation.  
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where cL denotes the sonic speed in the liquid phase. As for the gas phase it is assumed that gases 
included in a bubble mainly consist of non-condensation gas, which is taken to be perfect one. Its 
state equation is given as follows. 
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where nG is a constant denoting the ratio of specific heat. Then, the compressibility of the gas 
phase can be given by the following equation.  
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where cG denotes the sonic speed in the gas phase. Taking Eqs (5) and (7) into Eq. (3) we obtain 
the following equation defining the mean compressibility of the two phase mixture.  
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Here cG denotes the average sonic speed in the two-phase mixture. According to the equation we 
understand that the compressibility of the two-phase mixture depends upon the volume fraction 
of gas phase as well as the gas pressure, which is determined by the bubble size. Corresponding 
to the variation of working pressure bubbles included in a liquid expand a/o contract. The gas 
pressure at the inside of a bubble is different to the surrounding liquid pressure for the effect of 
bubble surface acceleration. So, the compressibility of a bubble-liquid mixture should be 
evaluated based on a careful consideration of bubble dynamics. However, it will take too much 
time to match the computations of a high frequency bubble surface oscillation and a fluid flow 
filed. In order to develop a practical method for engineering applications the effect of bubble 
oscillation is neglected. Then, we know that LGm ppp == , and Eq. (8) is simplified to the 
following one.   
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2.2 Turbulent Cavitating Flow Governing Equations 
 
As mentioned above fluid media of high-speed cavitating flow are treated as a two-phase 
mixture consisted of liquid and micro bubbles. Mean flow of the mixture is concerned by 
neglecting the relative motion of liquid and micro bubbles. For the numerical computation of 
such a complex flow phenomenon, a reliable viscous flow computation procedure for variable 
fluid density is required. As main flow governing equations general Reynolds Averaged Navier-
Stokes equations for compressible turbulent flow are adopted. Temperature variation caused by 
growth and collapse of cavitation bubbles is thought to be very small in the whole flow field and 
thus the conservation equation of energy is omitted. Conservation equations of mass and 
momentum employed are given in vector form as follows. For convenience the subscript m 
denoting the mixture is omitted hereafter. 
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where u denotes velocity vector and g does the gravity. τ denotes the stress tensor and its 
components are given as follows. 
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where i and j (=1, 2, 3) denote respectively three components of the coordinates. δij denotes the 
Kronecker delta and Sij does the strain tensor. ''

jiuuρ−  denotes the Reynolds stress which is 
related to mean velocity filed via a turbulence model. μ denotes the mean viscosity of the two-
phase mixture and it is estimated by the following formula given by Beattie et al. (5). 
 

GGLGL μαμααμ ++= )5.21(      (14) 
 
For modeling of the turbulence many works have been reported and the two-equation model 
based on a kinematic eddy viscosity has been proved to be an effective one for engineering 
applications. Concerning the flow problem to be concerned the RNG k-ε turbulence model for 
high Reynolds number flow is adopted to take account of the turbulence effect (6). According to 
the eddy viscosity the Reynolds stress tensor is written as follows.  
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where the eddy viscosity tμ  is defined by turbulence energy k and turbulence dissipation rate ε. 
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Transportation equations of the turbulence energy and the turbulence dissipation rate are given as 
follows.  
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Empirical coefficients included in the above turbulence model are assigned as follows. 

085.0=μC , 719.0=kσ , 719.0=εσ , 9.0=hσ , 42.11 =εC , 68.1~
2 =εC , 42.13 =εC , 

387.04 −=εC , 38.40 =γ , 012.0=β . 
In order to close the above equations, Eq. (9) relating the mixture density and pressure is 
adopted. Taking it into Eq. (11) we obtain the following pressure transport equation of the two-
phase fluid mixture.  
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Further, to estimate the variation of gas volume fraction the following mass conversation 
equation of the gas phase is employed (7).  
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Where the source terms Re and Rc denote vapor evaporation and condensation rates, which are 
supposed to be negligible here for the purpose of simplification.  
 
2.3 Computational Algorithm  
 
Equations (11), (12), (17), (18), (19) and (20) compose a set of turbulent cavitating flow 
governing equations. Considering the coexistent of strong compressible bubbly flow and weak 
compressible liquid flow regions these equations are solved by CIP-CUP method (4) based on 
time splitting technique. 
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Here f denotes an arbitrary variable. Superscripts (n) and (n+1) denote an arbitrary step and a 
new step marching a time interval Δt. The advection phase is calculated by CIP scheme, and the 
non-advection phase is calculated by finite difference method, where the viscous term and the 
acoustic term are respectively discretized by explicit and implicit methods as follows.  
 



 

⎪
⎪
⎩

⎪
⎪
⎨

⎧

⋅∇−=
Δ
−

+⋅∇+∇−=
Δ
−

+
+

+

)1(2*
*)1(

**
*

*)1( 1

n
n

n

c
t

pp

p
t

u

gτuu

ρ

ρ
    (22) 

 
Defining that ( ) tp Δ+⋅∇+∇−+= gτuu ****~ /)( ρ , we derive the following Poisson equation. 
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where *)1( ppp n −=′ + . Above equations are then solved by a velocity-predictor pressure-
corrector procedure similar to the SIMPLER method.  
 
 
3. COMPUTATIONAL RESULTS AND DISSCUSIONS 

 
Pressure-driven flow in Venturi nozzle is typically encountered in engineering practice and it has 
received much attention for the effect of cavitation. Its simulation is a challenging because the 
pressure difference driving a flow through a small Venturi can be very high, which may cause a 
strong cavitation. Geometry parameters of the Venturi concerned in this work are given as 
follows: 5.8/,64.1/,5.6/,36.1/ 2211 ==== dLanddDdLdD , where d denotes the throat 
diameter of the nozzle, D1 and D2 do the diameters at the inlet and the outlet of the conic section, 
L1 and L2 do the lengths to the inlet and the outlet of the conic section, respectively. As for the 
flow condition a nearly fixed static pressure is imposed the exit and a given total pressure is 
maintained at corresponding to the variation of flow velocity. As an index of cavitation intensity 
cavitation number σ is defined as follows.  

 

oin

vo

pP
pp

−
−

=σ           (24) 

 
where Pin denotes the total pressure at the inlet, po the static pressure at the outlet and pv the 
saturated vapor pressure. The discharge coefficient cq is defined by the following equation.  

 

)(225.0 2
oinL

d pPd
qc

−
=

ρπ
    (25) 

 
where q denotes the mass flow rate trough the nozzle under given condition. 
 
Figure 1 shows the geometry and the computation domain of the Venturi nozzle concerned. The 
flow is simplified into an axisymmetric one and the computational domain is discretized with 
body-fitted structured grid. The inlet of computation domain is taken to the 9.0d upstream and 
the outlet is taken to 32.0d downstream. As for the boundary conditions a varying pressure 



 

condition is imposed at the inlet according to the given total pressure and the actual flow 
velocity, and a given static pressure is specified at the outlet. All wall boundaries the no-slip 
condition is applied. At the in-out flow boundary of the cylindrical surface the free flow 
boundary conditions are imposed.  

 
At first, concerning the structure of no-cavitation flow numerical simulations were performed 
under a large cavitation number by specifying a discharge pressure high enough for a given 
driven pressure difference. As an example, Figure 2 shows the distribution of no-cavitaing flow 
when the driven pressure 010 pp ≅Δ , here p0 denotes the standard atmospheric pressure (σ≥2.5). 
According to the computation result the mean velocity of well-developed jet flow reaches to 
40m/s and the Reynolds number is known to be 5105.4Re ×≅ . Figure 2 (a), (b), (c) and (d) 
present contour maps of axial velocity u, turbulence kinetic energy k, turbulence dissipation rate 
ε and pressure p, respectively when the flow is well-developed. As shown in the figures, the flow 
accelerates in the convergent section and expands in after passing through the throat. In the 
divergent section a vortex region is formed between the main flow and the solid wall and a small 
flow separation is demonstrated near the wall just behind the throat. The turbulent kinetic energy 
is concentrated in the vortex region between the main flow and the solid wall, and the turbulent 
dissipation takes places in the shear layer as shown in Figure 2 (b) and (c). The mean pressure 
decreases from the inlet to the throat corresponding to the increase of flow velocity. So, as shown 
in Figure 2 (d), a low-pressure region is formed near the wall just behind the throat, where 
cavitation is easy to occur under a small cavitation number.  

 
With a special concern on cavitation, cavitating flows under a low cavitation number are 
investigated by decreasing the discharge pressure. Figure 3 shows, as a sample, the temporal 
variation of gas volume fraction where the driven pressure is kept to be the same as above and 
the cavitation number is decreased to 0.1 by adjusting the discharge pressure to the atmospheric 
one. Figure 3 (a) to (f) present the contour maps of αG in a sequence time, where αG increases to 
0.7 when the flow gets to be well-developed. The result demonstrates that cavitation take place 
initially in the starting vortex and develops in the shear layer. The value of αG increases 
gradually with developing of jet flow. According to Fig. 3 (b) to (d) we understand that 
cavitatition bubbles mainly concentrate in the shear layer around the jet flow.  
 
Figure 4 shows the distributions of cavitating flow at the well-developed stage, where Fig. 4 (a), 
(b), (c) and (d) respectively present the contour maps of pressure, axial velocity, turbulent kinetic 
energy, and turbulent dissipation rate in dimensionless manner. According to Figure 4 (a) and (b) 
we know that large vortexes are formed behind the throat in the divergent section. Pressure drops 
in these vortex cores but the lowest pressure is obviously higher than that in the case of no-
cavitating flow for the effect of cavitation bubbles. The turbulence kinetic energy and dissipation 
rate concentrate in the shear layer between the main flow and surrounding water. It means that 
many small vortices are generated in the shear layer where turbulence dissipations are caused 
mainly. Figure 5 shows the temporal variation of discharge coefficient in the case of cavitating 
flow by the dark solid line, where the dashed line denotes the variation of driving pressure 
difference. As shown in the figure the driving pressure deference is increased linearly to the 
given constant value within an initial acceleration time. The flow discharge coefficient increases 
gradually to a maximum and then accommodates to a certain level when the diving pressure 



 

reaches to the given value. For comparison the variation of discharge coefficient in the case of 
no-cavitating flow is denoted by the light solid line. It is confirmed that the discharge coefficient 
decreases for the effect of bubble expansion and contraction. Under the given condition when  
σ = 0.1, the discharge coefficient decreases to about 60% compared to the case of no-cavitating 
flow. 
 
 
4. CONCLUSIONS 
 
A simplified compressible mixture-flow bubble-cavitation model is developed for numerical 
computations of high-speed cavitating flow by coupling a bubble cavitation model and a 
compressible mixture flow procedure. The method has been applied to submerged water jet 
flows in a Venturi nozzle and its capability is confirmed through flow computations in different 
cases. Computational results demonstrate that pressure decreases at the throat of Venturi nozzle 
corresponding to the flow convergence and cavitation occurs in the low-pressure region between 
the wall and the shear layer behind the throat. When σ = 0.1, the gas volume fraction reaches to 
about 0.8 and the discharge coefficient decreases to about 60% under the effect of cavitation 
bubbles. 
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Figure 1. Geometry of Venturi nozzle and computational grids  

 
 

 
(a) Contour map of u  

 

 
(b) Contour map of k  

 

 
(c) Contour map of ε 

 

 
(d) Isobars 

 
Figure 2. Distributions of a developed no-cavitating flow (σ≥2.5)  



 

 

 
 

 
 

 
 

 
 

 
 

 
 

Figure 3. Development of gas volume fraction in a cavitaing flow (σ=0.1) 
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(b) Axial velocity u  

 

(b) Contour map of k 

 

(d) Contour map of ε 

Figure 4. Distributions of a developed cavitaing flow when σ =0.1  
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Figure 5. Temporal variation of discharge coefficient (σ =0.1)  

 


